

					iods weel	per «	Sche	me of E	xam		
S.	Board of	Subject Code	Subject				Theo	ry/Pra	ctical	Total	Credit $\mathbf{L} = \frac{(\mathbf{T} + \mathbf{D})}{2}$
190.	Study			L	LT		ESE	СТ	TA	Marks	L+(1+P)/2
1.	Electronics & Telecom	ET231201	Digital Logic with Verilog Design	3	1	-	100	20	20	140	4
2.	Electronics & Telecom	ET231202	VLSI System Testing	3	1	-	100	20	20	140	4
3.	Electronics & Telecom	ET231203	Low Power VLSI Design	3	1	-	100	20	20	140	4
4.	Electronics & Telecom	ET231204	Embedded System Design	3	1	-	100	20	20	140	4
5.	Electronics & Telecom	Refer Table II	Elective – II	3	1	-	100	20	20	140	4
6.	Electronics & Telecom	ET231291	Verilog Design and verification Lab	-		3	75		75	150	2
7.	Electronics & Telecom	ET231292	Embedded system Lab	-		3	75		75	150	2
		Total		15	5	6	650	100	250	1000	24

Table II

Elective-II						
Sr.No.	Board of Study	Subject Code	Subject			
1	Electronics & Telecom	ET231221	MEMS and IC integration			
2	Electronics & Telecom	ET231222	MOS Physics			
3	Electronics & Telecom	ET231223	Neural Network for VLSI			

Note:

(a) Abbreviations used : L-Lecture, T- Tutorial, P- Practical, ESE- End Semester Exam, CT- Class Test, TA- Teacher's Assessment

(b) The duration of end semester examination of all theory papers will be of three hours.

		October 2020	1.00	Application for AY
Chairman(AC)	Chairman (BoS)	Date of Release	Version	2020-21 Oliwards

Subject Code :- ET231201	Digital Logic with Verilog Design	L = 3	T = 1	P = 0	Credits = 4
Evaluation	ESE	СТ	ТА	Total	ESE Duration
Scheme	100	20	20	140	3 Hours

Course Objective	Course Outcomes
The objective is to make the students understand the computer added design tool and design various arithmetic and multilevels circuits and analysis its parameters for optimization of circuits	On successful completion of the course, the student will be able to: CO1: -work on Computer added Design tool and implement Various digital Structure. CO2:-learn various Implementation Technology of Mixed Circuits CO3: -Understand the technique through which they can optimize the logic Function. CO4: -Design Various arithmetic Circuit in Computer added Design tool. CO5: -Design Various Combinational and Sequential Circuit Implementation

UNIT-I: Introduction to logic circuits:

Variables and functions, Sysnthesis using AND, OR and NOT gates, Introduction to CAD tools, Introduction toVerilog [5Hrs]

UNIT–II : Implementation Technology:

Transistor switches, CMOS Logic, PLD, Transmission gates[5Hrs]

UNIT – III : Optimized Implementation of Logic Function :

Strategy for minimization, minimization of POS, Multiple Output circuits, Analysis of Multilevel Circuits[5Hrs]

UNIT - IV : Number Representation and Arithmetic Circuits

Positional Number representation, Addition of unsigned numbers, signed Numbers, Fast adders, Design of arithmetic circuits using CAD tools, Multiplication. [5Hrs]

UNIT – V : Combinational Circuit Building blocks:

Multiplexers, Decoder, Encoder, Code Converters, Arithmetic Comparison circuits, Verilog for combinational circuits Design of Sequential design, Design Asynchronous Sequential Design. [5Hrs]

		October 2020	1.00	Application for AY
Chairman(AC)	Chairman (BoS)	Date of Release	Version	2020-21 Oliwards

CO1

CO2

CO3

CO4

Text Books:

S.No.	Title	Authors	Edition	Publisher
1	Fundamental of digital Logic with Verilog design	S. Brown & Z. Vransesic	Third	ТМН
2	Verilog primer	J.Bhasker	Eight	Pearson education

S. No.	Title	Authors	Edition	Publisher
1	Fundamental of digital Logic with Verilog design	S. Brown & Z. Vransesic	Third	ТМН
2	Verilog primer	J.Bhasker	Eight	Pearson education

		October 2020	1.00	Application for AY
Chairman(AC)	Chairman (BoS)	Date of Release	Version	2020-21 Oliwards

Subject Code ET231202	VLSI System Testing	L = 3	T = 1	$\mathbf{P} = 0$	Credits = 4
Evolution	ESE	СТ	ТА	Total	ESE Duration
Scheme	100	20	20	140	3 Hours

Course Objective	Course Outcomes
The aim is to To expose the students, the basics of testing techniques for VLSI circuits and Test Economics	On successful completion of the course, the student will be able to: CO1:-apply the concepts in testing which can help them design a better yield in IC design CO2:-tackle the problems associated with testing of semiconductor circuits at earlier design levels so as to significantly reduce the testing costs CO3. identify the design for testability methods for combinational & sequential CMOS circuits CO4:-analyse the various test generation methods for static & dynamic CMOS circuits. CO5:- recognize the Silicon Debug Principles for improving testability.

UNIT-I: SPECIAL PURPOSE SUBSYSTEMS:

Packaging, power distribution, I/O, Clock, Transconductance amplifier, follower integrated circuits, etc. **Design Economics**: Nonrecurring and recurring engineering Costs, Fixed Costs, Schedule, Person power, example[**5Hrs**]

UNIT – II : TESTING OF COMBINATIONAL CIRCUITS: CO2

circuits – Failures and faults – Modeling of faults – Temporary faults – Test generation for Combinational logic circuits – testable combinational logic circuit design – Scan based design and JTAG testing issues[**5Hrs**]

UNIT – III: TESTING OF SEQUENTIAL CIRCUITS:

Test generation for sequential circuits – Design of testable sequential CK5- Built in self test – Testable memory design.[5Hrs]

UNIT – IV: VERIFICATION AND TESTING:

Verification – Timing verification – Testing concepts – Fault coverage – ATPG – Types of tests – Testing FPGAs – Design for testability.**[5Hrs]**

UNIT – V: VLSI SYSTEM TESTING & VERIFICATION:

Introduction, A walk through the Test Process, Reliability, Logic Verification Principles, Silicon Debug Principles, Manufacturing Test Principles, Design for Testability, Boundary Scan. VLSI Applications: Case Study: RISC microcontroller, ATM Switch, etc.[5Hrs]

		October 2020	1.00	Application for AY
Chairman(AC)	Chairman (BoS)	Date of Release	Version	2020-21 Oliwards

CO3

CO4

CO5

Text Books:

S.No.	Title	Authors	Edition	Publisher
	"CMOS VLSI Design: A	Neil H.E.		
1	Circuits and system	Weste, Davir	3rd Edition	Pearson Education
	perspectives	Harris		
2	Modern VLSI design: System on Silicon	Wayne, Walf	Second Edition	Pearson Education
3	"Digital System Testing and Testable Design",	M. Abramovici, M. A. Breuer, & A.D. Friedman	Second Edition	Computer Science Press

S. No.	Title	Authors	Edition	Publisher
1	"Basic VLSI Design	Pucknull	3rd Edition	PHI
2	Digital circuit Testing and Testability	P. K. Lala	2 nd Edition	Academic Press.

		October 2020	1.00	Application for AY
Chairman(AC)	Chairman (BoS)	Date of Release	Version	2020-21 Oliwards

Subject Code :- ET231203	Low Power VLSI Design	L = 3	T = 1	P = 0	Credits = 4
Evaluation	ESE	СТ	ТА	Total	ESE Duration
Scheme	100	20	20	140	3 Hours

Course Objective	Course Outcomes
The objective is to make the students understand the computer added design tool and design various arithmetic and multilevels circuits and analysis its parameters for optimization of circuits	On successful completion of the course, the student will be able to: CO1:-Understand the Technology advancement and its impact on Power Consumption of Circuit. CO2:-learn Power estimation Simulation and different Power analysis techniques CO3:-Design the power Optimized Sequential Circuit and its Analysis. CO4:-Understand Low power Architecture & Systems CO5:-Design the Clock Based Circuit and Check the Impact of timing on Ciruit.

UNIT-I: Device& Technology Impact on Low Power :	CO1
Need for low power VLSI chips, Sources of power dissipation on Digital Integrated circuits.	
EmergingLowpower approaches. Physics of power dissipation in CMOS devices. Dynamic	
dissipation in CMOS, Transistorsizing & gate oxide thickness, Impact of technology Scaling	•
Technology & Device innovation.[5Hrs]	
UNIT-II : Power estimation Simulation Power analysis:	CO2
SPICE circuit simulators, gate level logic simulation, capacitive power estimation, static state	
power, gate levelcapacitance estimation, architecture level analysis, data correlation analysis	
in DSP systems. Monte Carlosimulation. Probabilistic power analysis: Random logic signals	
probability & frequency, probabilistic poweranalysis techniques, signal entropy.[5Hrs]	,
UNIT – III : Low Power Design Circuit level:	CO3
Power consumption in circuits. Flip Flops & Latches design, high capacitance nodes, low pow	/er
digital cells library Logic level: Gate reorganization, signal gating, logic encoding, state machi	ne
encoding, pre-computationlogic[5Hrs]	
UNIT – IV : Low power Architecture & Systems:	CO4
Power & performance management, switching activity reduction, parallel architecture with volta	ge reduction,
flow graph transformation, low power arithmetic components, low power memory design. [5Hrs]	,
UNIT – V: Low power Clock Distribution:	CO5
Power dissipation in clock distribution, single driver Vs distributed buffers, Zero skew Vs toleral	ole skew.
chip& package co design of clock network Algorithm & architectural level methodologies : Intro	oduction,
design flow, Algorithmic level analysis & optimization, Architectural level estimation & synthes	is.[5Hrs]

		October 2020	1.00	Application for AY
Chairman(AC)	Chairman (BoS)	Date of Release	Version	2020-21 Oliwards

Text Books:

S.No.	Title	Authors	Edition	Publisher
1	"Practical Low Power Digital VLSI Design"	Gary K. Yeap	Third	KAP, 2002
2	"Low power design methodologies"	Rabaey, Pedram	Eight	Kluwer Academic, 1997

S. No.	Title	Authors	Edition	Publisher
1	"Low-Power CMOS VLSI Circuit Design"	Kaushik Roy, Sharat Prasad	Third	Wiley, 2000

			1.00	Application for AY
Chairman(AC)	Chairman (BoS)	Date of Release	Version	2020-21 Oliwards

Subject Code ET231204	Embedded System Design	L = 3	T = 1	$\mathbf{P} = 0$	Credits = 4
Evolution	ESE	СТ	ТА	Total	ESE Duration
Scheme	100	20	20	140	3 Hours

Course Objective	Course Outcomes
To make students familiar with the basic concepts and terminology of the embedded systems design flow. – To give students an understanding of the embedded system architecture and software development tools.	On successful completion of the course, the student will be able to: CO1:-Outline the features of Embedded Hardware. CO2:-Understand PIC Microcontroller and their interfacing. CO3:-understand concept of different Microcomputer and their interfacing concepts. CO4:-Design embedded system using software and tools. CO5:-Learn to task, data and memory management in real
	time operating system.

UNIT-I: REVIEW OF EMBEDDED HARDWARE:

Terminology Gates - Timing Diagram - Memory - microprocessors Buses-Direct Memory Accessinterrupts - Built-ins on the Microprocessor-Conventions Used on Schematic-schematic. Interrupts Microprocessor Architecture-Interrupt Basics-Shared Data Problem-Interrupt latency. [5Hrs] UNIT – II: PIC MICROCONTROLLER AND INTERFACING: CO2

Introduction, CPU architecture, registers, instruction sets addressing modes Loop timing, timers, Interrupts, Interrupt timing, I/o Expansion, I 2C Bus Operation Serial EEPROM, Analog to digital converter, UART-Baud Rate-Data Handling-Initialisation, Special Features - serial Programming-Parallel Slave Port. [4Hrs]

UNIT – III : EMBEDDED MICROCOMPUTER SYSTEMS:

Motorola MC68H11 Family Architecture Registers, Addressing modes Programs. Interfacing methods parallel I/O interface, Parallel Port interfaces, Memory Interfacing, High Speed I/O Interfacing, Interrupts-interrupt service routine-features of interrupts-Interrupt vector and Priority, timing generation and measurements, Input capture, Output compare, Frequency Measurement, Serial I/O devices Rs.232, Rs.485. Analog Interfacing, Applications. **[5Hrs]**

UNIT – IV: SOFTWARE DEVELOPMENT AND TOOLS:

Embedded system evolution trends. Round - Robin, robin with Interrupts, function-One- Scheduling Architecture, Algorithms. Introduction to-assembler-compiler-cross compilers and Intergrated Development Environment (IDE). Object Oriented Interfacing, Recursion, Debugging strategies, Simulators. [5Hrs]

UNIT – V: REAL TIME OPERATING SYSTEMS:

Task and Task States, tasks and data, semaphores and shared Data Operating system Services -Message queues- Timer Function-Events-Memory Management, Interrupt Routines in an RTOS environment, basic design Using RTOS.**[5Hrs]**

		October 2020	1.00	Application for AY
Chairman(AC)	Chairman (BoS)	Date of Release	Version	2020-21 Oliwards

CO5

CO4

CO1

Text Books:

S.No	Title	Authors	Editio n	Publisher
1	An embedded software primer	David E Simon	2001	Pearson education Asia
2	Design with Microcontroller	John B Peat man	1998	Pearson education Asia
3	Embedded Micro computer Systems. Real time Interfacing	Jonartthan W. Valvano	2001	Thomson learning

S. No.	Title	Authors	Edition	Publisher
1	Real-Time Systems and Programming Languages	Burns, Alan and Wellings, Andy	1997	Addison-Wesley- Longman
2	An Introduction to real time systems: Design to networking with C/C++	Raymond J.A. Bhur and Donald L.Bialey	1999	Prentice Hall Inc. New Jersey
3	Real time Programming: A guide to 32 Bit Embedded Development. Reading	Grehan Moore, and Cyliax	1998	Addison-Wesley- Longman
4	Embedded Systems Design	Heath, Steve	1999	Newnes

		October 2020	1.00	Application for AY
Chairman(AC)	Chairman (BoS)	Date of Release	Version	2020-21 Oliwards

Subject Code ET231221	MEMS and IC Integration		L = 3	T = 1	$\mathbf{P} = 0$	Credits = 4
Fyeluetion	ESE 100		СТ	ТА	Total	ESE Duration
Scheme			20	20	140	3 Hours
Course Objective		Course Outcomes				
To make students fa basic concepts and t the MEMS and IC To give students an of the MEMS and IC	On successfu able to: CO1:-Outlin CO2:-Under CO3:-Under CO4:- Under CO5:- Under	al completion the the feature stand layer is stand conce rstand Micro rstand the M	on of the es of ME Formatio pt of litho o stereo l ficro sens	e course, the MS and IC I n process ar ography and ithography f sors.	e student will be Integration. nd PVD. I their concepts. for MEMS.	

UNIT-I

Introduction, Evolution of Microsensors and MEMS, micrometallurgy and material characterization, microscopy and visualization, lateral and vertical dimensions, electrical measurements, physical and chemical analysis, XRD, TXRF, SIMS, AES, XPS, RBS, EMPA, analysis area and depth. [5Hrs] **UNIT-II CO2**

Silicon material properties, crystal growth, crystal structure, wafer process, Thin Film Material and Process: PVD and CVD, Metallic thin films and Dielectric thin films, properties of dielectric film, Epitaxy, Thin Film Growth and Structure: PVD and CVD film growth and structure. [5Hrs] **UNIT-III CO3**

Pattern generation, optical lithography, lithographic patterns, etching: wet etching, electromechanical etching, anistropic wet etching, plasma etching, wafer cleaning and surface preparation. [5Hrs]

UNIT-IV

Micro stereo lithography for MEMS: Photo polymerization, stereo lithographic system, micro stereo lithography, scanning methods, two photon MSL, other MSL approaches, Polymeric MEMS architecture with silicon, metal and ceramics, combined structure and applications RF MEMS, and Optical MEMS. [5Hrs]

UNIT-V

Micro sensors: Thermal sensors, Radiation Sensors, magnetic sensors, Biochemical sensors, Introduction to SAW Devices, MEMS-IDT Micro sensors: Principle, fabrication, testing wireless readout, hybrid accerolometers and gyroscope. [5Hrs]

		October 2020	1.00	Application for AY
Chairman(AC)	Chairman (BoS)	Date of Release	Version	2020-21 Oliwards

CO1

CO4

Text Books:

S.No.	Title	Authors	Edition	Publisher
1	Introduction to Microfabrication	Sami Franssila	2nd	John Wiley
2	Microsensors MEMS and Smart Devices	Gardner	2013	John wiley

S. No.	Title	Authors	Edition	Publisher
1	Microactuators	Masood Tabib- Azar	1998	Kluwer
2	Sensor Technology and Devices,	Ljubisa Ristic	1994	Artech House Cambridge

		October 2020	1.00	Application for AY
Chairman(AC)	Chairman (BoS)	Date of Release	Version	2020-21 Oliwards

Subject Code ET23122	MOS Physics		L = 3	T = 1	$\mathbf{P} = 0$	Credits = 4
Evaluation	ESE 100		СТ	ТА	Total	ESE Duration
Scheme			20	20	140	3 Hours
Course Objective		Course Outcomes				
To make students familiar with the basic concepts and terminology of the MOS Physics flow. – To give students an understanding of the MOS Physics .		On successfu able to: CO1:-Outlin CO2:-Under CO3:-under CO4:-Desig technique. CO5:-Learn	ul completion the the feature stand Small stand concept n MOS Dig to Analog N	on of the es of MO -Geometr ot of diffe gital IC u MOS Des	course, the S Device Pl ry Effects. Frent MOS I using different ign.	e student will be nysics. IC Processes. ent designing

UNIT-I

MOS Device Physics: Triode Region, Saturation Region, Avalanche Region, Sub threshold Region, Second Order Effects, Ways of Measuring Threshold Voltage, MOS Device Applications. **[5Hrs]**

UNIT –II

Small-Geometry Effects: Nonuniform doping & Effect on Threshold voltage, Sub tThreshold current, Short- channel effect, Narrow width effect, Small-Geometry effects, Shrink & Scaling, Scaling down the Dimensions of MOS Devices. **[5Hrs]**

UNIT –III

MOS IC Processes: Metal Gate PMOS, The Hypothetical Metal-Gate NMOS, Metal-Gate CMOS, Silicon Gate LOCOS NMOS Processes, The HMOS Process, Process Enhancements. **[5Hrs]**

UNIT-IV

MOS Digital IC Design: Building Blocks for MOS digital IC, Inverter DC Analysis, Inverter Transient Analysis, MOS Logic Circuits, Memory Circuits, Other Circuit Techniques. **[5Hrs]**

UNIT-V

CO5

Analog MOS Design: Considerations in Analog MOS circuits, Analog Building Blcoks, MOS Operational Amplifiers, Capacitor Based Circuits, Switched Capacitor Filters, Charge Coupled Devices, Charge Coupled Device Applications **[5Hrs]**

		October 2020	1.00	Application for AY
Chairman(AC)	Chairman (BoS)	Date of Release	Version	2020-21 Oliwards

CO2

CO3

CO4

Text Books:

S.No.	Title	Authors	Edition	Publisher
1	Modern MOS Technolgy: Processes, Devices and Design	DeWitt G. Ong	2nd	McGraw Hill Book Co.
2	Security in Computing	Charels P. Pfleeger	2014	Prentice Hall

S. No.	Title	Authors	Edition	Publisher
1	Inside Internet Security	Jeff Crume	-	Addison Wesley

		October 2020	1.00	Application for AY
Chairman(AC)	Chairman (BoS)	Date of Release	Version	2020-21 Oliwards

Subject Code ET231223	Neural Network for VLSI	L = 3	T = 1	$\mathbf{P} = 0$	Credits = 4
Evolution	ESE	СТ	ТА	Total	ESE Duration
Scheme	100	20	20	140	3 Hours

Course Objective	Course Outcomes
The objective is to make the	On successful completion of the course, the student will be
students understand and	able to:
conceptualize the basics of	CO1:- Understand the Basic introduction of neural network.
Artificial Neural Network	CO2:- Learn artificial neural network and learning rule.
architecture . The aim is to impart	CO3:- Understand the Supervised Learning and
skills to students for developing	Neurodynamics.
and hosting Neural Network	CO4:- Understand the Design Unsupervised and Hybrid
circuit establishment.	Learning.
	CO5:-Learn the Applications for VLSI Design.

UNIT-I Introduction:

CO1

CO2

CO5

Introduction: History, overview of biological Neuro-System, Mathematical Models of Neurons. [5Hrs]

UNIT–II ANN architecture:

Learning rules, Learning Paradigms-Supervised, Unsupervised and reinforcement Learning. [5Hrs]

UNIT - III Supervised Learning and Neurodynamics:CO3Perceptron training rules, Delta, Back propagation training algorithm, Hopfield Networks,
Associative Memories. [5Hrs]

UNIT – IV Unsupervised and Hybrid Learning: CO4

Principal Component Analysis, Self-organizing FeatureMaps, ART networks, LVQ [5Hrs]

UNIT - V

Applications for VLSI Design: Applications of Artificial Neural Networks to Function Approximation, Regression, Classification, Blind Source Separation, Time Series and Forecasting. **[5Hrs]**

		October 2020	1.00	Application for AY
Chairman(AC)	Chairman (BoS)	Date of Release	Version	2020-21 Oliwards

Text Books:

S.No.	Title	Authors	Edition	Publisher
1	An Introduction to Neural Networks	Anderson J.A.	1999	PHI
2	Neural Networks-A Comprehensive Foundations	Haykin S	1999	Prentice-Hall International, New Jersey

S. No.	Title	Authors	Edition	Publisher
1	Neural Networks: Algorithms, Applications and Programming Techniques	Freeman J.A., D.M. Skapura	1992	Addison-Wesley, Reading, Mass
2	Mathematical Methods for Neural Network Analysis and Design	Golden R.M	1996	MIT Press, Cambridge

		October 2020	1.00	Application for AY
Chairman(AC)	Chairman (BoS)	Date of Release	Version	2020-21 Oliwards

Subject Code ET231291	Verilog Design and Verification Lab	L = 0	T = 1	P = 2	Credits = 2
Evoluation	ESE	СТ	ТА	Total	Lab Periods
Scheme	75	20	75	150	10

List of experiments to be performed:

1.8 bit shift register

2.8:1 multiplexer

3. Barrel shifter

4. N by m binary multiplier

5. RISC CPU (3bit opcode, 5bit address)

6. SPICE simulation of basic analog circuits.

7. Verification of layouts (DRC, LVS)

Tools used : Cadence tools, Mentor Graphics tools, lab view tools, multisim, SILVACO

		October 2020	1.00	Application for AY
Chairman(AC)	Chairman (BoS)	Date of Release	Version	2020-21 Oliwards

Subject Code ET231292	Embedded System Lab	L = 0	T = 1	P = 2	Credits = 2
Evolution	ESE	СТ	ТА	Total	Lab Periods
Scheme	75	20	75	150	10

List of experiments to be performed:

- 1. Create ,compile and test a program to print a string a message on standard output device
- 2. Create a program to print powers of 2 from 20 to 212
- 3. Write a program tht continuously reads Port A and provides output to port B
- 4. Use External Hard ware Interrupt to print a message to the standard output devices each time aninterrupt occurs . Also print number of time interrupt occur
- 5. Create a program that will turn on an LED when falling edge occur on external interrupt 0 and turnit off when rising edge occour on external interrupt 1
- 6. Create a programme that will demonstrate how watchdog timer resets the processor if programmehangs up to infinite loop
- 7. Create a programme that will read the data on all 8 bits of port B swap the nibble of data and sendit to port A
- Create a simulated engine speed monitor that will light a LED if the motor speed drops below200rpm and another LED if motor speed exceed 500 rpm and light another LED if motor speed between 200 to 500 rpm
- 9. Create a programme to output the ASCII character G every 50 msec via USART at 9600 baud rate
- 10. Write a microcontroller 8051 program to add two floating-point numbers.
- 11. Write a microcontroller 8051 program to multiply two floating-point numbers.
- 12. Write a microcontroller 8051 program that generates 2kHz square wave on pin P1.0, 2.5 kHz on pinP1.2 and 25 Hz on pin P1.3.
- 13. Write a microcontroller 8051 program for counter 1 in mode 2 to count the pulses and display thestate o the TL1 count on P2. Assume that the clock pulses are fed to pin T1.
- 14. Write a microcontroller 8051 program to transfer word "COMMUNICATION" serially at 4800 baud and one stop bit, to the com port of PC continuously.
- 15. Write a microcontroller 8051 program to receive bytes of data serially, and put them in P1. Set thebaud rate at 2400 baud, 8-bit data, and 1 stop bit. Assume crystal frequency to be 11.0592 MHz.

		October 2020	1.00	Application for AY
Chairman(AC)	Chairman (BoS)	Date of Release	Version	2020-21 Oliwards

Recommended Books:

- 1. Embedded C Programming and the Microchip by PIC Barneet, Cox, O'cull
- Thomson publication
- 2 Embedded system by Raj Kamal TMH

List of Equipments/Machine Required :

- 1. MATLAB Software with Simulink
- 2. Emulation software with Cross C complier

		October 2020	1.00	Application for AY 2020-21 Onwards
Chairman(AC)	Chairman (BoS)	Date of Release	Version	